Wie gut können wir Situationen einschätzen? Ist heute ein Glückstag, oder verfolgt einen diesmal das Pech? Können wir unseren Instinkten in Zufallsexperimenten immer vertrauen?

In dieser Stunde beschäftigen wir uns mit dem weltbekannten Ziegenproblem. Das Ziegenproblem, auch bekann als das Monty-Hall-Problem, (benannt nach dem Moderator einer US-amerikanischen Spielshow "Let's make a deal"), beschäftigt sich mit der Fragestellung, ob man eine bereits getroffene Entscheidung nach zusätzlicher Information ändern sollte. Zur Veranschaulichung, stelle man sich drei Türen vor, hinter denen sich ein Hauptgewinn und zwei Ziegen, die Nieten symbolisieren, versteckt sind. Nun trifft der Spieler eine Entscheidung und legt fest, auf welche Türe er setzt. Anschließend wird eine Ziege aufgedeckt und der Spieler darf sich nun entscheiden, ob er weiterhin auf seine erste Tür setzt, oder auf die andere noch zugedeckte Tür wechselt. Wir wollen nun diese spannende Fragestellung spielerisch an die Teilnehmer*innen heran führen und erörtern.

Wie kann das sein? Die meisten Spieler denken, dass die Gewinnchance bei zwei Bechern auf 50% liegen sollte. Also sollte es demnach egal sein, ob man wechselt oder nicht. Doch das ist falsch!

Die anschauliche Erklärung liefert eine Fallunterscheidung. Auf dem Blatt sind beide Varianten ausgeführt - ein mal mit Wechsel und ein mal ohne. Was wir nun raus lesen können ist, dass die Wahrscheinlichkeit, den Hauptgewinn abzuräumen im Fall eines Wechsels größer ist.
Dieses Problem kann man auf n-Becher ausweiten, um dann (n-2)-Becher aufzudecken. Die Wahrscheinlichkeit, dass man bei der ersten Wahl richtig liegt, ist dann 1 zu n, was bei einer großen Anzahl von Bechern verschwindend klein wird. Der Wechsel auf den übrig gebliebenen Becher bringt eine höhere Gewinnchance.

Das nächste Mal wartet ein neues Thema darauf eingeführt zu werden. Wir freuen uns schon auf nächsten Donnerstag!
Keine Kommentare:
Kommentar veröffentlichen
Die Kommentare werden moderiert. Es kann daher bis zu 24h Stunden dauern, bis der Kommentar sichtbar wird.